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* ABSTRACT

This paper is a four part dialectic between theory and experimental observations and
measurements of two dimensional periodic surface waves in a vessel of rectangular cross
section. The first two parts consist of minor contributions to the existing theory and
experimental measurements of elliptic (deep ater) standing waves and the (shallow
water) travelling hydraulic jump. A new theory is proposed in the third part which-J
explains the transition from the elliptic standing wave to the hyperbolic travelling
hydraulic jump. The result is a family of standing cnoidal waves. To lowest order the
solution is composed of two non-interacting periodic progressive cnoidal waves travelling
in opposite directions. At higher order the two wave trains interact but the interaction
produces nothing of qualitative significance except when the cnoidal standing wave of
highest amplitude is considered. This family of waves is validated by experimental
observation in part four. In addition in part four observation of compound cnoidal

"- standing waves leads to a conjecture about a sequence of continuous wave forms in
" parameter space leading from the linear sinusoidal wave to the travelling hydraulic

jump. /
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ON THE TWO-DIMENSIONAL PERIODIC SURFACE WAVES
OCCURRING IN RECTANGULAR VESSELS:

THEORY VERSUS EXPERIMENT

Thomas J. Bridges

*. 1. Introduction

This report is a dialectic between theory and experiment. It is composed of four

parts; two on theory and two on the experiment. The subject is two-dimensional

periodic surface waves which occur in a partially filled rectangular vessel.

The theory will be concerned with an idealized fluid: i.e. inviscid and irrotational

and without surface tension at the surface. The rectangular vessel of length 2a contain-

ing fluid of still water level h, when a forcing function is present, rotates harmonically

about a fixed point. Such a configuration is depicted in Figure 1.1. The parameters

d and -y fix the point of rotation. 0 is the rotary displacement at frequency w of the

vessel. Under the conditions specified the governing equations are,

C)2 0 d 2
toc3 g 0 € 0 for -a< x <a,-h < y< ql(x,t) (.)

0
X 2  9y 2  _

fly on x --a (1.2a) .

fx on y z--h (1.2b)

0

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041. This
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Figure 1.1 A schematic of the two-dimensional wave field in a rotating vessel
with rectangular cross-section.



and on y = ?l(x, t)
817 84)817 av 84ai +  + fill -- fix+ n = 0 (1.3)

84) [r4)2 ("')2] + ~a 84 4 i (V- +*W _ x _ + _ ( 1 2

+r[gcos0 + 1 dcos' 1-2l dsin-1] + x[gsin 0 -9 ldsin - fl2dcos-y] =0 (1.4)

where 0 is the velocity potential and ?7 is the surface displacement, and fl , the

angular velocity of the vessel. The derivation of these equations, under the assumption

of a uniform vorticity field, is given in Appendix I.

In the absence of the forcing function the two relevant dimensionless parameters

are 6 = h/2a and = H/h where H is a measure of the wave amplitude above the still

water level. The introduction of the forcing function brings in the parameters d, 1, w,

and 0 where 0 is the amplitude of the harmonic forcing function 0.

The surface waves may be classified with the parameters £ and 6. When << 6 2

(which includes the case c - 0, i.e. linear waves) the surface waves occurring are

elliptic standing waves. When ( >> 62 the travelling hydraulic jump occurs. A theory

for both these regions has previously been established. A theory for c << 6' was

established by Tajdbakhsh and Keller[15] and a theory for the region ( >> 62 has been

- established by Chester[2,3] and Verhagen and Van Wijngaarden[191. These two theories

with improvements are given in Section 2. In Section 3 experimental observations

*; corresponding to the theory in Section 2 are contained. This includes photos and time

series for elliptic standing waves and the travelling hydraulic jump. Both of these wave

types have been studied and observed in the past. However the region in between has

recieved almost no attention.
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In Section 4 a theory is proposed for surface waves in the intermediate region

when e = 0(62). The result is that a family of cnoidal standing waves exists in this

region. Then in Section 5 experimental verification of these waves is discussed along

with another class of compound standing waves. It is conjectured that these compound

standing waves are combinations of various mode cnoidal standing waves, and as the

amplitude is increased higher mode cnoidal standing waves are excited and eventually

there is enough harmonics to produce a travelling hydraulic jump. If, in fact, the family

of cnoidal standing waves are the only eigenfunctions existing in the intermediate range

between the elliptic standing wave and the hydraulic jump the the following scenario

can be constructed for the complete range of c, 6 when 6 is sufficiently small.

When e << 62 (and 6 small, including the limit as the amplitude goes to zero,

i.e. linear waves) an elliptic standing wave forms which bifurcates from the state of

rest. This wave is well described by the theory of Tajdbakhsh and Keller. It is a

weakly nonlinear wave containing only a few significant harmonics. However this wave

breaks down as t approaches 62 in magnitude. This may be shown with the solution

of Tajdbakhsh and Keller itself but in an interesting piece of work Vanden-Broeck and

Schwartz181 using a numerical scheme have shown that the bifurcation of the natural

frequency has a turning point when = 0(2) amd the theory of Tajdbakhsh and

Kel]er can not get around the turning point. Vanden-Broeck and Schwartz computed

numerical solutions for the region outside the turning point and conjectured that there

might be a new class of standing waves in this region. By devising a perturbation ,,

scheme for small ( and 6 such that the ratio ( to 62 is constant, it is found in Section 4 hE?
that this, in fact, is where the family of cnoidal standing waves lives. These waves are

much richer harmonically as they have a complete Fourier series.

-4-
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As the amplitude is increased further the class of solutions observed are combina-

tions of the set of cnoidal standing waves selected by the forcing function. Observance

of this phenomena in the experiment suggests that as t is increased beyond 6' the nat-

ural frequencies of the higher mode cnoidal standing waves become integral multiples

of the fundamental in sequence. First the 3-mode is excited and a compound 1-3 mode

- cnoidal standing wave is observed. As the amplitude is increased further relative to 62

* a 5-mode is added to the wave form and this forms the compound wiggle wave discussed

in Section 5. Further increase of the amplitude introduces higher and higher harmonics

I until eventually the wave field jumps to the travelling hydraulic jump. Interestingly,

this cascading process, unlike turbulence for example, is not dynamic. At a fixed am-

plitude each compound wave in the sequence is (apparently) stable as evidenced by

the results in Section 5. Therefore this sequence of compound standing waves is a

sequence of equilibrium states in parameter space which eventually leads to that flood

of harmonics; the travelling hydraulic jump.

Obviously much work remains to substantiate these claims but it does suggest

a continuity in parameter space between sinusoidal waves and the hydraulic jump.

However as evidence of the lack of concrete and rigorous theory in this area there has

not even been an existence proof for elliptic standing waves when c << 62 but € still

finite. So much work remains to be done on this problem.

=--



I
2. Theory - I: Elliptic Standing Waves and Hydraulic Jumps

2.1 Introduction

There are essentially two existing theories describing the nonlinear waves in a

rectangular basin. The first is the theory of Tadjbakhsh and Keller [151 which finds the

linear eigenvalues and the standing wave solutions emitted by them. These waves will

be referred to as elliptic standing waves since they are governed by an elliptic partial

* differential equation. It will be shown however that these waves are valid for only a

small range of amplitude, breaking down when e = 0(62).

The other theory is that proposed by Chester [2,31 and Verhagen and Van Wijn-
gaarden 119]. They consider the region where e > > 62 (shallow water, finite amplitude)

and find that there are no periodic solutions in this region because dispersion is neg- ,~

ligible here. But the introduction of a forcing function renders the problem solvable.

Periodic solutions which are discontinuous may be found in this case. The discontinu-

ous solutions represent a family of travelling hydraulic jumps. It is interesting to note

that the hydraulic jump is not an eigenfunction. It is, sort of, a state of degeneracy,

where all the standing wave modes coalesce to form this odd wave. : .

These two theories, however, leave a void in the region c = 0(62). A theory is

proposed in Section 4 for this region. It is found that a family of enoidal standing . -

uwaves exists in this region.

First, the theory of Tadjbakhsh and Keller will be given with some embellishment.

Their analysis was for the fundamental mode only. Here it is extended to arbitrary

mode number. The main results only will be given, the details of the procedure can be

found in their paper. .

. . . . . * . %*,.-...--...• 4
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Vn.

2.2 Elliptic Standing Waves 
V~~~

The independent and dependent variables are scaled in the following way: x -2a,

y -. h, t -p 11w, w - V'gh/2a, q7 - thand~ c2av~gJi, where 2a is the tank length,

h the still water depth, and the dimensionless parameters are e H/h and 6 h/2a,

where H is a measure of the maximum height of a wave above the still water level.

* This scaling is appropriate for fluid of finite depth only and must be recast for the case

of infinite depth. The governing set of equations and boundary conditions, when the

forcing function is absent, are,

62~A ~
a2+ a2 0 for- < X <--1 < Y !5 ej(z't) (2.1)ax2  ay2 2 2'

- 0 atz=± (2.2a)
a-x 2

0 at y -1 (2.2b)

W- + --- j- 0 on y = 7(x,t) (2.3a)
at a9X X b Ox ay

atk 1 ax b2 ay

To obtain a formal solution to this problem in the limit as ctends to zero, a power

series solution in i is sought,

0 00+ () + 2 12 +(2-4a)

77 10 +E171+ 12 +(2.4b)

W WO + (EWI +I (2 W2 +..(2-4c)

The free surface boundary conditions are expanded in a Taylor series about y =0,

the expressions (2.4) are then substituted into the set (2.1)-(2.3). Equating terms

proportional to like powers of Eto zero results in the sequence of elliptic boundary

value problems,.=*. -

62-i +-~ - 0 for - <x < <-,l y <O (2.5)
Ox2 aY2 2 -2



ax 1

=~j 0 at y= -1 (2.6b)
ay

WO- j-- - I ayl -1?, at y=0 (2.7a)

WO -- + r?3S, at y=0 (2.7b)

for j =0,1L..The 1?, and S,, which are essentially the same as those found in the

* paper of Tajdbakhsh and Keller, are dependent on terms of previous order only. For

*the linear problem R0  So 0 and it is straightforward to show that the zeroth order

* solution is
am

WO =\--tanh am6 (2.8)

'1o0~ C05mx sin t (2.9)

icosh amb(1 +y) Csm oi(.0

00 U)O cosh amb 6axcs 2 n

*where am mir, m = ,,.,and Y x + 1. The points wo for each m are

*the bifurcation points. The higher order terms w1l1 then give the solutions aoi'-, the

* branches emitted by these points. The approach is straightforward and the detailis wil!

be omitted.

The first order solution is,

W, 0 (2.11)

?h [Bi1 - B 1 2 cos2t] cos2ami (2.12)

cosh2am6(1 + Y) cos 2amY sin 2t (2.13)~iAit +A 1 2 sin 2t +A 1 3 cs~

-8- a,
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gr

where

4Z

1 ~2
M6 OO WO

-3 4L26
A 13  (6 - a (2.14c)

Bil 1!! 2 + W~b2) (2.15a)

w0[a~~1a~- wa -3~2 (2.16b)
64 U6 w b

Proeedng o he ecoB ode robem , Bhe resultis

A 6 4oha6*

coshgam61a) 4oa4 cosb2

172=[B21cos am 6  2 o 3m i

A [ 2 3 cos am!( + B24 cos a, s3t (2.18)

cosh 3am6

where the coefficients A21 and B2j are given in Appendix 11.

Berore proceeding to evaluate these solutions some estimate of the range of validity

*of Ithe solutions is helpful. The appearance of b2 in the coefficients A13 and B 12, as

* well as the frequency correction W2, is ominous as b -~ 0. Therefore it is apparent the

re, ults will be valid for only a finite range of amplitude; 0 < c ((). A clue as to

the value of c,,(b) can be found by taking the limit of w as b - 0 with efixed, .-

lim W a,, + (2.19)
(ftzed

-7 -7-9-
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Obviously, when e -,,m6 the tenet of the expansion is violated. Namely, higher order

* terms should be of higher order. This suggests that cm(6) 0(6). However, applying

- the same argument to n results in

lim 77(x,t) Cos a'YmCost - c os2om cos 2t
, 6-0 8a(62

Sfixed 
b

27c2
- cos 3a .. sin3t + -(2.20)
256am6

Contrary to the frequency, the wave height expansion breaks down when a (m6) 2.

At this point there is a spillover of the higher harmonics onto the zeroth order term,

again violating the tenet of the expansion. This results in a lower estimate for the

- domain of validity in the amplitude of cm(6) = 0(62). It can therefore be concluded

that the classical standing wave solution is valid for any depth such that 0 < ' < m(6)

with ,(6) = 0(62). In this range the solutions are for elliptic waves. The boundary

value problem is essentially elliptic with merely a time dependent domain.

The effect of amplitude on the frequency for waves of this type can be seen in the
following bifurcation diagrams. Figures 2.1, 2.2, and 2.3 are bifurcation diagrams, for

* the frequency, at 6 = .4, 6 = .2, and 6 = .1 respectively. The bifurcation is subcritical

- or supercritical depending on the value of 6. The switch occurs when w2 0. Setting

•= 0 results in the equation,

tanh [amb [(29 + 4 4) - (29 - 4V"7 4) -1] (2.21)

Solving this shows that w2  0 when a,6 - 1.0581. Therefore the first mode switches

, direction when 6 .•34, the second when 6 - .17, and the third when 6 - .11.

-1in-

. . ........... . . ..

'...,.,. :.....-............ ..... .......... ........ ...... .....



0.5

0.4

0.3 Figure 2.1 Bifurcation diagram for
0.2 the first five two dimensional elliptic

standing wave modes with b = -.
0.1 
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0.00 1 2 3 4
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0.5 __________-*

0.4

0.3 Figure 2.2 Bifurcation diagram for

0.2 the first five two dimensional elliptic
standing wave modes with b 1- *~0.1

0.0 0 1 2 3 4 -.-.-
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0.4

0.2 the first five two dimensional elliptic

0.1 standing wave modes with 6

0.0
0 1 2 3i
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Figures 2.4, 2.5, and 2.6 give examples of the wave height for modes 1, 2, and 3

* respectively. They are for 6 = 0.4. The solutions are similar at other values of b and

when e < (,. The first mode is the classical standing wave often referred to as the

slosh mode, and the second mode is the mode studied by Taylor[16] in his study of the

highest standing wave. In Figure 2.7 the wave height at the left tank wall is plotted

as a function of time. This time series is typical for the elliptic standing wave when

<< 62.

* As pointed out by Tadjbakhsh and Keller and Concus 161, the above expansion _

breaks down, even when c < e,, if a higher mode becomes an integral multiple of the

fundamental. This happens when

m tanh mir p2 tanh 7r6 (2.22)

for any positive integer p and m = 2,3,.... When the condition (2.22) is met, an inter-

nal resonance occurs. In other words higher harmonics of the fundamental generated

by the nonlinearity excite other linear modes. When this occurs a separate expansion

is necessary.

The condition (2.22) is realized for particular values of 6. There are an infinity 0

of these singularities (this has been shown by Concus 1]), but only the lowest order

interactions will be important. However it will be shown that even these are negligible.

The first three critical points, where or= v'jrb- tanhjrb, are

013 2o when tanh:7r= i9 i.e., b~ .306

1
3a, when tanh lr6 -2 106 - 19, i.e., b ~ .143

04 3

cr5 =3o when tanhirb -8V, i.e., 6 .198 KM

-12-
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Figure 2.4 Spatial distribution of the
wave height, for the first mode, at

fixed time with 6 -1-,,and c .15.

10.

Figure 2.5 Spatial distribution of the

wave height, for the second mode, at
fixed time with b -o, and = .12.

Figure 2.6 Spatial distribution of the
wave height, for the third mode, at

fixed time with 6 . and r 10.

-13-
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0.2

77 0.0

-0.21 J

0 1 2 3 4

t/27T

Figure 2.7 The time series for the wave height at the left tank wall for theOI

first mode with 1 .07 and 6 = I.

2 .

0.25

* .4%

7) 0.00

-0.25 I. .

0 1 2 3 4
t/2nr

Figure 2.8 The time series of the wave height for Chester's discontinuous ~
solution of the forced shallow water equations.
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Although these singularities appear to be ominous they too are of higher order. The

first singularity, 03 = 2o will not arise in the expansion until fifth order, at least,

which renders it inconsequential. Also the other two singularities above will arise at

the fifth or higher order. Presumably a proper modification of the expansion could

be constructed (Mack [10] has done this for the critical depths arising in the circular

standing wave problem, and Vanden-Broeck 117] has done this for the critical points

arising in the capillary standing wave problem), but it is unlikely that the contribution

* to the overall solution in this case will be noticeable.

In light of these facts, the expansion of Tadjbakhsh and Keller will be valid, to the

order given, for all depths, but only for a limited range of amplitudes, C < Em.

It is worth noting that the problem for elliptic standing waves in the presence of a

forcing function, where the forcing function is near the fundamental natural frequency,

has been studied by Moisiev [12], Faltinsen[7], and Lou. et al. [9]. The solutions are

obviously similar to the eigenfunctions discussed here, but the important result is the

relationship between the amplitude of the forcing function and the response amplitude.

Moisiev showed that, when the forcing frequency is near the linear resonant frequency,

the response amplitude c - 0(61/3) where O is the amplitude of the forcing function.

This means that the nature of the nonlinearity of the governing partial differential

equation and boundary conditions (the operator) is cubic in the neighborhood of the

bifurcation points. It will become clear in the analysis in Section 4 that the nature of

the nonlinearity becomes quadratic when c = 0(62), and when t >> 62 the nonlinear-

ity remains quadratic. Therefore this operator has the interesting property that the

nature of the nonlinearity changes as the amplitude of the response increases. These

conjectures are based on the interesting, and useful, theory of imperfect bifurcation 113],

and singular perturbation of bifurcations [I 1], proposed by B. Matkowsky and E. Reiss.

In that work, they propose a method for determining the degree of the nonlinearity

of operators in the neighborhood of singularities (such as bifurcation points). This

-15-
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information is then used to obtain the proper expansion parameter for the analysis of

the imperfect bifurcation problem (a forcing function qualifies as an imperfection).

2.3 The Travelling Hydraulic Jump

The other theory proposed for waves in rectangular basins is Chesters 12,31 -shal-
low water theory". This theory is derived by taking the limit as 6 -+ 0 with fixed,

although small, amplitude. To proceed the equations (1.1)-(1.4) are scaled in the man-

ner described earlier except 4 and q} are now independent of e. The forcing terms are

retained and their role in the existence of periodic soluitons in this region of the 6 - ,.

plane will be elaborated.

In the limit as b - 0 the Laplace equation in conjunction with the bottom bound- l_-.

ary condition gives

,0 -+ flxY6 2 -62-- """ (2.23)2 (1 y"

2 aX2

where 0 is a function of x and t only. Substituting this expression into the free surface

boundary conditions and neglecting terms of 0(62) and higher results in

a97,  400 a7,  a___a, a +'-V + (1 +)ao = 0 (2.24)

400  _t a- ++ OX=0 (2.25)
at 2 ax)

But the substitution u ao0/ax results in the common form of the shallow water

equations

LO + uL7 + (1 + 7)-- = 0 (2.26)
-.t ax-.ax

au au a7, -

_u 0 +U- 0 (2.27)a-t ax axz+ O .,...

-16-
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with boundary conditions u(± 1, t) = 0. This formulation, and the subsequent analysis,

differs somewhat from that of Chester but the essentials are the same. The forcing

function is taken to have the form 0 = 2 cost. The amplitude of the forcing function

is taken proportional to the response amplitude squared. Solutions are sought in the

neighborhood of resonance and the nonlinearity and forcing function must balance in

order to obtain a periodic solution. This suggests that the response in the neighborhood

of resonance is of 0(1811/2). It also suggests that the nonlinearity of the operator is

quadratic in the neighborhood of the linear eigenvalues. This is to be contrasted with ,. _

the result when the operator was elliptic. The governing equations are now hyperbolic

as well. Therefore, as the amplitude of the wave increases the governing equations and

boundary conditions change type from elliptic to hyperbolic.

To obtain a formal solution of this problem in the limit as £ tends to zero, a power

series solution in c is sought

W U0O + EW I +.-. -(2.28a)

u f u I + C U .2.. (2.28b)

2
r/ = 1 + f172 +" (2.28c)

Substituting and equating terms proportional to like powers of t to zero results in a

sequence of inhomogeneous wave equations. Combining the two first order equations

results in a homogeneous wave equation for ul,

uu1 =0 (2.29)

where L is the D'Alembertian, . -

2 a2

L- o (2.30)
-" .19X

with homogeneous boundary conditions. Retaining the mode number as arbitrary, the -.",

general solution is

u (x,t) = f( ) - f ) (2.31)

-17-
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where = t + ci, and =t - ci, and wo= a, mr. The wave height has a

solution,

171(Xt= -f - fx) (2.32)

The function f is unknown at this order. It will be found by imposing the solvability

condition at the next order. The second order equations are

811 CU 2  a7 i OUa I+330
WO + ,7 -= 0 (2.33)

at ax at axi- ax

aU2  a172 au I
WO- + + W- + U, '+ cost =0 (2.34)

which can be combined to form an inhomogeneous wave equation for u2. After substi-

tuting the first order result into the right hand side, the result is

UUt 2 = - 2amwjI"(f ) - f"(x)]- 3a [(f(,)f'( )) t - (f(x)f'(x))''

- aIf( )f"(x) - f(x)f"(e)] + am sin( +X) (2.35)

There is a solution to (2.35) if and only if the right hand side satisfies a Fredhoim

*i alternative. The necessary Fredholm alternative for the inhomogeneous wave equation

is given in Appendix IIl. Application of this results in an ordinary differential equation

forf, .

c4a wlf"(x) + 6a' (f(x)f'(x))' + 4amcos(-) - 0 (2.36) ")

which may be integrated twice to yield,

f 2 (x) + 3am f(x) 36- cos(X) - c = 0 (2.37)

where c2 
- fo" f (x)dx. It is interesting to note that if the forcing function were

absent in (2.37) the solution would be f(X) = constant, but the constant would have

to be zero to satisfy mass conservation. This shows that there are no periodic solutions

bifurcating from the state of rest for the shallow water equations (2.26) and (2.27) when

the forcing function is absent. In fact, Keller and Ting 18] have rigorously proved that

for any set of quasilinear first order set of hyperbolic equations with two unknowns,

the solutions become singular in finite time. In other words, the shock wave solutions_. .

are not eigenfunctions, they are states of degeneracy of the eigenfunctions.
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However with the introduction of the forcing function periodic, albeit discontinu-

ous, solutions may be found. With non-zero forcing function (2.37) has the following " "

solution for the first mode,

2w1  4 I
f (x) - .± -3 2 + COS2 8)

37r 7r V3 4

where

b 2  37 c 2 c+ -wj 1 (2.39)32 c 97r"
2  37r2  

. '

However, for mass conservation f(x) must satisfy

jf(x)dx = 0 (2.40a)

or
2 + b2) v1 - 0 sin 2 zdz=O (2.40b)

.
3

wh re rc2 = (1 + b 2)'. (2.40b) contains an elliptic integral of the second kind with

S"m modulus ic which has a real solution for 0 < je
2 < I only. Therefore there are no

continuous solutions for !2 r2
w i~n < 12/i (2.41) -. :

.V.

But this is in fact the region of interest; the neighborhood of resonance. However, as

shown by Chester, periodic discontinuous solutions can be found which satisfy (2.40).

There are an infinity of discontinuous solutions which may be constructed, using the

two solutions (2.38), which satisfy (2.40). However, as pointed out by Chester, when

b 2 0 such solutions would include shocks of rarefaction type, which are non ,hysical.

One can also use an energy argument requiring u and t) to increase across the shock.

Elaboration on these arguments are given in Chester J21, and Collins 5i, in his more gen-

eral study of nonlinear wave equations, constructs other arguments for finding unique

discontinuous solutions based on an "entropy" argument as well as looking for discon- . "

tinuous solutions as limits of solutions with small viscosity. %'".
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Therefore, taking b = 0, the result is the following family of discontinuous solu-

tions,

fc 4 ]os (2.42)

where 1[ ] 2.33rj X irw1 ]
si r " i J < - < 7r + sin- rW6,1 (2.43)

for -I < < I. Substituting this expression into (2.32) results in the first order-- 4v V- J".

wave height, r%

4u) 4 2 + (2.44)

In Figure 2.8 this expression is plotted for fixed z (the left tank wall) as a function of

time. The forcing function is equal to the first natural frequency (P = 0). Since the

depth has been ruled out through the limit process, all one can say is that the depth

is "very shallow". Chester [2] has plotted the result for other forcing frequencies by

varying wl. They are similar to Figure 2.8 but the solutions become continuous as w,

exceeds the resonance region, given by (2.41).

In the next section these theories will be compared with an experimental study.

. 1-.%.

"0.. ,

. - ..-



3. Experimental Study of Elliptic Standing Waves and Hydraulic Jumps

3.1 Introduction

: '. ,. "% ,

An experimental study was undertaken with the primary goal of exploring the .10

nature of the surface waves between the two regions discussed in the previous section.

In addition some previously unrecognized facets of elliptic standing waves and travelling

hydraulic were illuminated. The experimental observations made for the neighboorhood

of the 6 - c plane between elliptic standing waves and shocks will be discussed in detail

in Section 5. It is the purpose here to describe some experimental observations obtained

for the theoretical regions discussed in Section 2.

The regimes observed in the experiment are broken down in Figure 3.1 where a >,

rough diagram of the waves observed for various combinations of ( and b are plotted.

The points near the diagonal are the observed values of e, for fixed 6, where standing

waves, of any variety, were observed to break down. Curves of e = 6, f - 6 as

well as c (7r6)2 are superimposed on tLe diagram. It is seen that the breakdown of

standing waves occurs at i - b or equally well c - (7rb) 2 . There is then an intermediate-V

region where compound waves are observed, which will be discussed in Section 5, and

then when c > about 1 and 6 < about .15 the travelling hydraulic jump is observed2

exclusively. Although the travelling jump is three dimensionally unsteady in a strict

sense, in the large it is essentially two dimensional and in fact very stable. Once the ' '.

hydraulic jump is formed, regardless of how much the amplitude of the tank motion is

increased, the jump is maintained with the strength increasing slightly with increasing

tank motion. The curved labelled line in the figure is an extrapolation of the result of

Schwartz and Whitney 1141. They showed that for fluid of infinite depth (the purest of

elliptic standing waves) the maximum height of a stable waveform was reached when W

H/2a - .2. In terms of £ and 6 this is i - .2/ which is superimposed on the figure.

This gives an upper bound for elliptic standing waves, and may be an upper bound for

all types of irrotational waves appearing in rectangular vessels. The intersection of this

-21-

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . ...

.,.-: ;: .:::-.:::-:-.-:...,,:.. : . .::i:ii::~iii::i: : ": : :.: . .::: -:, -: . . . . .. : -". . . - :: ..



curve with the E - 62 curve at 6 .6 suggests that for 6 > .6 the only class of existing

waves are the elliptic standing waves.

The experimental arrangement which was constructed in order to observe these

waves is now described and then the results will be discussed.

1.0
S(7[6)

2

0.8 -0

0.6

0.4

0.22
~~Elliptic _

0.0
0.0 0.2 0.4 0.6 0.8 1.0

Figure 3.1 A diagram of the 6-t plane which shows approximately where the
various classes of waves were observed to exist. The triangles represent the
values of c for fixed 6 where standing waves were no longer observed, and the
circles represent the lowest values of for fixed b where a travelling hydraulic
jump was observed.
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3.2 Experimental Setup

The experimental setup is depicted in Figures 3.2 and 3.3. It was constructed and

setup at the MIPAC Research Facility at the Mathematics Research Center. The tank,

constructed of -" thick plexiglass, has the following dimensions: tank length, 2a = 18",

tank breadth = 3", and the tank height = 15". Although the tank height was 18", the

fill depth was limited to about 6" due to the large inertial force imposed by the fluid on

the driving mechanism causing perturbations to the otherwise strictly sinusoidal forcing

function. The natural frequencies in Hz of the first five (two dimensional) modes, as

a function of the dimensionless depth 6, for a vessel of this dimension is shown in

Figure 3.4. It is important to note, however, that in a rigid tank undergoing forced

harmonic oscillation only odd modes may be excited. In fact, it appears that the only

way to excite even modes is to move the endwalls harmonically. This is how Taylor

,161 excited standing waves in his study of the limiting configuration of standing waves

in deep water. In his case the mode studied and depicted in photos in his paper was

the m=2 mode. Due to the rigid walls only odd modes are elicited in this study.

A steel shaft, rigidly bolted to the bottom center of the tank and mounted in

rotary bearings on a wooden support stand, acts as the pivot for the roll motion of

the tank. A driving arm, attached perpendicular to the shaft, is connected to the

driving mechanism, which oscillates vertically. With this arrangement the vertical

oscillation of the driving mechanism imparts an angular rotation to the tank, i.e. roll

motion. The driving mechanism is a Briiel & Kjaer Vibration Exciter Type 4808. It is

an electromagnetic vibration exciter much like a loudspeaker, where the movement is

produced by a current passing through a coil in a magnetic field. The amplitude of the

excitation is varied by controlling the current. The harmonic output, to the driving

mechanism, is created in and controlled by the HP 5451C Fourier Analyzer shown in

Figure 3.3.

-23-
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Figure 3.2 The apparatus used to study

the waves in a rectangular basin. The
black object in the background is a ver- -
tical oscillator which provides the forc--
ing function. The electronics to the left

pre-process the wave height time series
for input into the Fourier analyzer.

J 11 tl Figure 3.3 The HP Fourier analyzer
which drives the oscillator; records
and analyzes the experimental data.
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The HP 5451C Fourier Analyzer is a programmable minicomputer which creates,

inputs, outputs, and analyzes time series. Fourier analysis programs such as the (a)

forward and inverse Fourier transform, (b) power and cross-power spectrum, (c) trans-

fer function, (d) coherence function, (e) convolution, (f) auto and cross correlation, (h)

ensemble averaging, etc., are built in and can be performed through keyboard com-

mands without special software. In addition, the analyzer can be programmed to run

the experiment and input and analyze the various sensory measurements such as the *

local wave height and the tank rotary displacement. In this experiment the Fourier

analyzer is programmed to do the following. It creates, given the desired frequency

or frequencies, and outputs a time series to the exciter. The amplitude of the exciter

is controlled in real time and can be continuously varied. The Fourier analyzer then

" recieves and analyzes on command the time series of the wave height and or tank dis-

placement. A hard wired external plotter is used to plot the results, and an hard disk

is used for storage of the programs and data blocks.

The wave height is measured using a taunt-wire capacitive wave guage mounted one

inch from the left tank wall. The electronics, which convert the changing capacitance,

produced by the water riding up and down the wire, to a changing voltage, which is

then input into the Fourier analyzer, is mounted to the left of the tank in Figure 3.2.

The Fourier analyzer plots the signal and computes the Fourier transform to deduce

the frequency content.

-26-
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3.3 Experimental Observations

In the experiment the wave forms are elicited by forcing the tank to oscillate.

* Therefore there is not complete congruence between the solutions observed and the

bifurcation analysis of, for example, Tadjbakhsh and Keller. However, when the forc-

ing frequency is near resonance, the solutions of the forced problem should be very

- near those of the bifurcation analysis. Therefore the forcing frequency will be near

resonance unless otherwise noted. An experimental setup of this kind is dependent on

five dimensionless parameters; -y and d which specify the point of rotation (however in

" this experiment these are fixed at -y = and d = 6), 6 the fluid depth, and w and 0

the frequency and amplitude of the forcing function. The amplitude of the response,

c, is also a parameter, but it is posited that there is a functional relationship between

c and 0. Therefore for a particular "run", once the depth is fixed the only parameters

are the frequency w (actually f will be used where f = w/27r) and amplitude 0 of the

forcing function.

Observations of elliptic standing waves will now be discussed. As pointed out in

Section 2 these solutions occur at all depths but for only a limited range of amplitude.

Therefore consider the fill depth 6 = .2. Here the relevant natural frequencies are

f, = 1.04Hz, f3 = 2.22Hz, and fs = 2.93Hz. In Figures 3.5, 3.6, and 3.7 photos of

the 1, 3, and 5 mode respectively are shown. In each case the forcing function was

set equal to the linear natural frequency. These figures may be compared to the result

of the theory of Tadjbakhsh & Keller shown in Figures 2.4 and 2.6. The results are

similar. These figures are in fact typical of the elliptic variety of standing waves. It is

interesting that the waves of this type look elliptic. The body of fluid moves uniformily

*: as if every particle were aware of every other particles motion. A striking contrast to

• 1hyperbolic waves.
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Figure 3.5 A classical mode 1 elliptic standing wave, where 6 .20, f fi

1.04 Hz.

Figure 3.6 A mode 3 elliptic standing wave, showing signs of a three dimen-

sional instability at the peaks. with 6 .2 and f -. f3 2.22 liz.
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Figure 3.7 A mode 5 elliptic standing wave, with 6 .2 and f fs 2.93

Hz.
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Figure 3.9a With 6 .077 and f 15 2.68 a mode 5 elliptic standing wave

occurs.

Figure 3.91) However, at the same depth 6 .077. but A it h a lower frequency

f - f, .64 and suffirientlY large amplitude. a travelling hydraulic jump is

formed.
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-0.05

-0.10 I

0 1 2 3 4 5
Time, sec

Figure 3.10a The time series for the wave height (one inch from the left tank
wall) when 6 =.20 and f = , .9702. This is a typical result for the
elliptic standing wave and closely resembles the theoretical result shown in
Figure 2.7.

-40

g-60

-80*
0 5 10 15 20 25

Frequency, Hz

Figure 3.10b The Log magnitude of the Fourier transform of the time series
in Figure 3.10a. It is essentially a discrete spectrum with the minor peak
at the forcing function and the 2 nd and dpasa w n he ie

the forcing fuinction. suiggesting that the three termT expansion of Tajdbakhsh
and Keller is sufficient to describe this wave temporally.
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The time series for the wave height shows this as well. Figure 3.11a shows the time

series for the "deep water jump" when 6 = .104 and f = fl. Although the time series

is "almost discontinuous", and periodic "in the large" there is some irregularity due to

the small amount of dispersion present. The Log of the Fourier transform of this wave

series for the "shallow water jump" is depicted in Figure 3.12a. Here the time series is

more regular and the "almost discontinuous" nature of the wave height is obvious. The

presence of dissipation prevents the solution from becoming truly discontinuous but

nevertheless the experimental time series is approaching the theoretical prediction of

Chesters shown in Figure 2.8. The Log of the Fourier transform for this time series is ':".

shown in Figure 3.12b. The explosion of harmonics over that occurring for the standing

wave problem is obvious. But this is to be expected from a function which is almost

discontinuous.

In the next section a theory for the "missing link" between elliptic standing waves

and the hydraulic jump is proposed.

.. , p."

r
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0.15

-0.15

0 2 4 6 8 10

Time, sec

Figure 3.11a Time Series for a "deep water" travelling hydraulic jump where
6 = .105 and f f = .74. At this depth there remains enough dispersion
to produce an irregular travelling jump.

0

'~-20

CK)
E go-60

-80
0 5 10 15 20 25

Frequency, Hz

Figure 3.11b Log magnitude of the Fourier transform of the time series in

Figure 3.1 ]a. Due to the "almost discontinuous" nature of the time series

r the spectrum is rich.



0.15-

0.00

0 2 4 6 8 10
Time, sec

Figure 3.12a Time series for a "shallow water" travelling hydraulic jump
where 6 =.077 and f =~ f £ 14. Here the function is more regular and
begins to resemble the shallow water solution of Chester in Figure 2.8.

40
"C

L'o -60t

0

-80
0 5 10 15 20 25

Frequency, Hz

F igure 3.12b Log magnitude of the Fourier transform of the time series in
Figure 3.11 lb. The spectrum is again rich due to Ithe nature of the hy draulic
iliflp.
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4. Theory - II: Cnoidal Standing Waves

The solution for finite amplitude standing waves in fluid of arbitrary but finite

depth was first derived by Tajdbakhsh and Keller [151 and extended to arbitrary mode :.S...

number in Section 2. It was also shown in Section 2 that this solution is not uniformily

valid in the amplitude. When e = 0(62) there is a spillover of the higher harmonics

onto the zeroth order solution violating the tenet of the expansion. This spillover is

in fact the first sign of the change of type of the standing wave. The amplitude (c)

is beginning to get large enough to challenge the role of the dispersion (62). When

<< 2 the dispersion dominates and the solution is the well-behaved elliptic standing

wave, and when i >> 62 the dispersion can no longer check the coalescence of the

harmonics and they run together as a hydraulic jump.

There is however an intermediate region where the dispersion and the amplitude

are in harmony, i.e. 4 = 0162). A theory for the wave forms in this region is proposed

in this section. In order for the relation i = 0(62) to hold b must be sufficiently small.

Therefore an asymptotic solution is sought with the simultaneous limit f - 0 and

-- 0, but with the requirement that (/b remain constant. This is done by taking

the relationship 6 = ,r where r = 0(1) and carries the sign of f.

The governing equations and boundary conditions are the same as (2.1)-(2.3) but

with the substitution 6 ,(,

TE-- 0 in -1<x<-1<y o? (4.1)
aX2  ay 2  2 2"

= at x=±- (4.2a)

ax 2
- at y=-1 (4.2b)

ono - 0 on y =t, 1(X,t) (4.3)
at axdaz ay
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a94 18 2 1 a )2 (4)

w~-±~(~) ±~-(~) +17=0 on y~e~xt (4.4

With as the only small parameter appearing, a power series solution in e is

sought,

W =O+ w, ( W2+ (.5
2

77 Io + 071 + W2 +" (4.6)

2

O=Oo(Olc 02...(4.7)

These expressions are substituted into the governing equations and boundary condi-

tions, the free surface boundary conditions are expanded in a Taylor series about the

still water level, and terms proportional to like powers of E are set to zero resulting in

5 a sequence of boundary value problems. The Laplace equation gives,

00 0 ib(X, t) (4.8)

01i +~(t -) i( a 2  (4.9)
2 axy

02 0 2 (X,t +) - 5X +at - +2 Y 4a~ (4.10)
2 i~ O 2 4 j(±Y X'

*etc.. These may then be substituted into the free surface boundary conditions. The

* zeroth order problem is then

4 00
77o + o -0(4.11)at

a1OO2~ 0 (4.12)

and the first order problem is

71 + W -- - -~.~ + Ld (4.13)
at 2 OxO t 2 ax*.

UO -+ a2  - -O~ 1 0  + a70  =0 (4.14)
at ax2  6 Oxt +9 0 O x a X
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and this may be continued to higher order. Here the solution will be carried through

the first order.

Combining (4.11) and (4.12) the zeroth order problem is a homogeneous wave

equation,

U00 0(4.15)

* where u is the D'Alembertian,

U 28- - 82 (4.16)
0 at 2  jX 2

* with the additional requirement that 8tpbo/ax vanish on the vertical boundary x ±2

* (4.15) and the wall boundary condition have the general solution

WO am(4.17)

where t= + am t - ctY, am mir, and Y x + ~.With (4.11) the zeroth

order wave height is found to be

aif'0+ f'1(x)) (4.19)

The function f(C) is, however, unknown at this order. The Fredhoim solvability con-

dition applied at the next order will result in an expression for f (C).

The zeroth order result (4.17)-(4.18) are substituted into (4.13)-(4.14). The two

equations are combined to form the following inhomogeneous wave equation for 015,

Lip F1 F(x, t) (4.20)

where

F, (x, t) T {"()+ f"(}- 2amw If f"(C~) +±
3

a 3{f'I(Of "(0) + f'(X)f"(0)

+ am{"~)'x +f(f"(X)} (4.21)
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(4.20) has a solution if and only if F1 (x, t) satisfies,

2 a_, F -X + X jdC=0 (4.22)

- This is a variant of the Fredholm alternative and is proved in Appendix III. Application

of this requirement results in the following nonlinear ordinary differential equation for

3  ""(X) - 2amwlf"(X)- 2af'U)f) = 0 (4.23)

but defining h(X) -amf'(x) and integrating the equation once,

rh"(X) - am h + 9 h 2 (X) -43 J= 0 (4.24)

Conservation of mass requires f~", h(x)dx = 0, therefore Ii is a positive definite

constant given by
1 h 2 (x)dx (4.25)

- It is important to note that the nonlinearity of the resulting expression for h(X) is

quadratic. This suggests that the nonlinearity of the operator is quadratic in that

region of the 6 - E plane where E = 0(62) (and this may also be true for c >> 62). The

operator for « 2 is cubic in the nonlinearity as discussed in Section 2. .--.-..

The solution of (4.24) can be found in terms of Jacobian elliptic functions, i.e.,

h(X) A + Bcn2 (x;K) (4.26)

when u2 2aMA 3 m (1 2K2), and
when u, -- 4oA- rar - :.

4 2 2 1
A o- 4a.r{K2 -r 1 + - E(7r; )} (4.27)

3 m7r

B 4 2 r2 (4.28)

and the constant I1 is found to have the following expression,

32,A A + -ramB(1 K2) (4.29)3 9 -- '-
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The cn(x; K) is the family of cnoidal functions with modulus K. Necessary details for

this and the other Jacobian elliptic functions are given in Appendix IV. f(x) is found

by integrating h(X)

f(X) = -- TOm2Z(x;ec) + constant (4.30)

where Z(x; r) is the Jacobian Zeta function. The constant is arbitrary and it is chosen

for convenience to be zero to satisfy f20' f(x)dx 0 0. A complete description of the

zeroth order solution may now be given,

wo = am (4.31)

-0(z,t) = -- ram4 2 [Z(t + amy;C) + Z(t - amz;)] (4.32)"
3

8 2 2 1
;70(x" t) = -a T[K2  +-(7; ~3 m 71 -~r;)

+K2 rc4cn2 (t + am; c) + cn 2 (t - ami; K)] (4.33)

and the first order correction to the frequency is found to be .-

w, -2ram -E(r; K) - -(2- r 2 )] (4.34)
ir 3

which is positive definite. Therefore the bifurcation is supercritical; i.e. the natural

frequency increases with increasing amplitude. It is interesting to note that r and

C1 usually appear together. Recalling that c = 162, it was found in the solution for

elliptic standing waves that spillover occurs when c = (am6) 2 . In addition, as shown in

Appendix IV equation (IV.6), the cnoidal function has a complete Fourier cosine series

showing that when c 0(62) all the higher harmonics are present in the solution.

With f(X) known, it may be substituted into the right hand side of (4.20) and

upon integration the first order solution for tP, is found to be

-i -p- ( + X) + -- [f()f'(X) + f(x)f'() + Ifi() + fi(x)] (4.35)

. .. .'.
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and by combining with (4.9) the complete expression for the first order potential is

4- - 2a ( + x) + -[f()f'(x) +/(x)f'( )] + am(I + y) 2[h'( ) + h'(X)]

*2a2 4 2

+fI() + fi(x)] (4.36)

and with (4.13) the first order wave height is

,71 + + () + h(x)] - h(6)h(x) - -- [h"( ) + h"(x)]
2 am am 2 2

+ [f( )h'(x) + f(x)h'(C)]- [h(e) - h(X)12

4 2

-aMr[f () + fla(x)l (4.37)

The function f (), as well as the second order correction to the frequency, may be

found by imposing the Fredholm solvability condition to the second order problem.

The main result is that the zeroth order wave height is given by a family of left .V'-

and right running cnoidal waves with parameter #c varying over 0 < ,t 2 < 1. The

combination of the left running and right running waves forms a standing cnoidal wave.

If K2 = 1, then cn( ; 1) -+ sech(C) which would then suggest that the waves would be

a combination of a right and left running solitary wave. However, this is not the case

since the solitary wave, due to the necessity of an infinitely long tail, will not satisfy

the periodicity condition. In fact if it is required that the solution be periodic in time

with period 2ir then there is only one member of the tc family which will satisfy this.

The cn2( ; K) function is periodic with period 2K(!,c K), where K(j; K) is the complete hi.
2 2

elliptic integral of the first kind. Therefore the admissable value of K(!; r) is given by .

the root of the transcendental equation,

7r___ 0 (4.38)

S- \/I 2sin'.

A numerical solution of this equation results in a value for r 2 of r , .9691.
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The second order frequency correction W2 and the function f (x) may be found

through application of the solvability condition on the second order problem. The

second order problem has the form -.
'..4.,.

12 + WO- + W2 + (4.3)+ a4 l \ 8oo =04t
at a2W~ 2 t ax a'x 2r ayJ ayat

* ~and 
. 5

0q 2  140 3  a n ao ano aioi + an71 '30o
oat + i-j-+ - + ax ax ax ax

170 2 02 _7 a20 0 (4.40)7 a 2  r ay2

When these equations are combined and the solvability condition is applied, after some

integration and algebraic manipulation the resulting differential equation for fi(X) is

.""(X) - -,fiXi + 2=h(x)f (x) constant

(6w2 + 31- + 4h' 57w'(h(x) - 5,d2h2(x ) _ ',(X)h(x) (4.41)
a 4a a, 5c4s 2o!m amL

where the numbers d, and d2 are given in Appendix IV, and the integration constant %J%~

is chosen such that the integral of fA(X) is zero. The equation is a linear differential

equation with nonconstant coefficients which has the homogeneous solution f'h(X) -

13h(X) where /3 is an arbitrary constant. The inhomogeneous part must satisfy an

* additional solvability condition. After multiplication of (4.41) by h(x) and integration
- .°o, 

5
d

from 0 to 2am the left hand side is zero and the integral of the right hand side results

in an expression for W2,
17 23.+357.?;+ 'a'

Id-i + ____+ -s (5d2 14  215) (4.42)

8 45 m 30 121,

where the constants d1 , d 2 , 14, and Is are given in Appendix IV. After substitution of

this into (4.41) it can be shown that (4.41) has the general solution

f(X)=A 1 +A~ h(X)+ 7Ah2(X) (4.43)

,
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The arbitrariness of A, is due to the integration constant in (4.41) and the arbitrariness

of A 2 is due to the homogeneous solution of (4.41). This arbitrariness, however, may

be eliminated. To satisfy conservation of mass the integral of f'(X) in 0 to 2am must

be zero, therefore

A, 72 (4.44)

and if t is defined such that it is proprotional to the leading order wave height then

the inner product of to with i7i should be zero. This gives a value for A 2 of

A 2 = -2 + 3314 (4.45)
Q2 7 1ja,

Therefore substitution of (4.43)-(4.45) into (4.36) and (4.37) gives a complete descrip-

tion for the first order solution.

* In Figure 4.1 a bifurcation diagram for the frequency is shown. W, is positive

,definite and it appears that w2 is as well so the bifurcation is subcritical for all the

modes; the natural frequency of the cnoidal standing waves increases with increasing

amplitude. A typical time series for the wave height at the left tank wall is given in

Figure 4.2.

In Figure 4.3, the evolution of the mode=1 cnoidal standing wave is shown. The

result is plotted as a function of space with each successive frame -Lt of a temporal

period. This wave is very similar to that found by Vanden-broeck and Schwartz 118],

using a numerical technique, and shown in their Figure 3. Figures 4.4 and 4.5 show

the evolution of a 2-mode and 3-mode respectively. The "travelling character" of these

*" waves is to be contrasted with the "standing character" of the elliptic standing waves.

In Figure 4.6 the evolution of a 1 mode elliptic standing wave is plotted. Here the

wave appears to move vertically and otherwise remain coherent. Figure 4.7 shows the

• "evolution of a 3-mode elliptic standing wave.
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Figure 4.1 Bifurcation diagram for the natural frequency (the first five modes)
of standing cnoidal waves.

2

77 0

-1 j \-J \,
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t/2-7r

Figure 4.2 Time series for the wave height at the left tank wall for a cnoidal
standing wave.
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Figure 4.3 Temporal evolution of the x-
distribution of the wave height for a 1-
mode cnoidal standing wave.
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Figure 4.5 Temporal evolution of the x-
distribution of the wave height for a 3-
mode cnoidal standing wave.

t 7r

t I
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t=O

Figure 4.6 Temporal evolution of the x-g distribution of the wave height for a I-
mode elliptic standing wave.
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it

'47' Figure 4.7 Temporal evolution of the x-
distribution of the wave height for a 3-
mode elliptic standing wave.

2
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The distribution of the 2-mncde at t 7 r at the bottom of Figure 4.4 raises an

interesting question about the enclosed angle of the crest of a large amplitude cnoidal

* standing wave. It is well known that the Stokes wave has a limiting angle of 120'.

Schwartz and Whitney (141 have shown that the elliptic standing wave probably has a

limiting angle of 900. The cnoidal standing wave appears to have a limiting angle less

* than 90", probably much less than 90", and possibly a limiting configuration that is a

cusp.

The cnoidal standing wave is the periodic surface wave occurring when the fluid -

* is shallow and c = 0(b2). When IE 6> 2 it was shown that no periodic solutions exist

* to the innate problem although a hydraulic jump is formed in response to a forcing

function. There is obviously a vague region remaining between E-0(b2) and E >> b2.

The transition from a cnoidal standing wave to a hydraulic jump is an interesting i

but still unclear theoretical problem. In the next section experimental observations of

cnoidal standing waves as well as another class of waves witnessed between c 0(6b

and i > >6b2 will be elaborated.

I
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5. Experimental Study of the Transition Region

The transition region is defined to be the region in the amplitude, c, with fixed and .0

small 6, after the breakdown of the elliptic standing waves and before the formation

of the hydraulic jump. It was shown in the previous section that the eigenfunction for

the nonlinear problem in this region is the cnoidal standing wave. The first step is to
see if such waves are observed in the experiment. It will be shown that this, in fact,

is the case. The parameters are chosen such that an isolated 1-mode cnoidal standing

wave occurs. The depth paramter is b - 0.2, and the forcing frequency is f = 1.0

which is just above the first linear natural frequency f, - 0.97. The photos in Figures

5.1, 5.2, and 5.3 are of this wave at three different times. The wave has the distinct

undulating motion associated with the cnoidal standing wave and not observed in the

elliptic standing wave which has (almost) a node at the center of the tank. Comparing

Figures 5.1-5.3 with Figure 4.3 it is seen that 5.2 resembles the evolution in 4.3 at

t: (9 or 10)f, 5.2 at t = (6 or 7)-1- and 5.3 at t Figure 5.4a is the time series

for the wave height at the left tank wall for the wave in Figure 5.1-5.3 and Figure 5.4b

is the Log of the Fourier transform of this time series. The time series closely resembles

that predicted by the cnoidal wave theory in Figure 4.2.

The eigenfunction analysis of the previous sections has suggested that the eigen-

functions when c << 62 are the elliptic standing waves, and when c 0(62) the

eigenfunctions are the cnoidal standing waves, and when c 62 it was suggested that

there are no periodic characteristic solutions. It is possible that there is another class

. of eigenfunctions between c = 0( 2) and c >> 62 but this is unlikely. These remarks .-.

serve as an introduction to the experimental observations which follow.
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Figure 5.1 A I1-mtode cnoidal standing wave at peak amplitude wheni 6 0.2,
f, .97, and f z1.0.

FI

Figure -. 2 -A I -miodc noidal standing wave at a different~ ine t h 6 0.2,
f, .97. o iid f I .0.

5-2.
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Figure 5.3 A additional 1-mode cnoidal standing wave at a different time
with t5 

-' 0.2, fi .97, and! 1.0.
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Figure 5.4a The time series for the wave height at the left tank wall cor-
responding to Figures 5.1-5.3. The parameters are 6 -'0.2, f, .97, and
f =1.0.
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Figure 5.4b The Log magnitude of the Fourier transform of the time series
in Figure 5.4a.
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The complex waves observed, as the amplitude increases and the "clean" ]-mode

cnoidal standing wave changes into a wave field with greater spatial complexity, are

probably due to the selecting process of the forcing function which is present. So rather

than a new class of eigenfunctions these waves are probably compound cnoidal waves
S.' and in fact the observations lend credance to this judgement. There are two distinct i

compound waves which occur so often (for a large but compact range of parameters)

that they may be given titles. They are the compound 1-3 wave and the compound

wiggle wave. The compound 1-3 wave appears at shallow depths but not too shallow

(6 > 0.15) and looks like a cnoidal 1-mode joined with a cnoidal 3-mode. Figures 5.5

and 5.6 are photos of the compound 1-3 wave at two different times showing (almost)

the symmetry. The forcing is at the first natural frequency but the presence of the

third mode is quite obvious. This wave has a rather interesting time series as well and

it is shown in Figure 5.7a with its Fourier transform in Figure 5.7b. The time series is

periodic with an obvious presence of higher harmonics.

The compound wiggle wave occurs at shallower depths at sufficient amplitude.

Figures 5.8-5.11 show an example of this wiggle wave at four different times. The

depth is b = .084 and the forcing frequency equals the linear natural frequency. The '

wave is periodic, repeatable, and deterministic but has many spatial harmonics (most

notably a 5-mode in Figure 5.10) and the harmonics travel at different speeds from

*! the fundamental. A time series for this wiggle wave is given in Figure 5.12a, with its

Fourier transform in Figure 5.12b, where the "wiggles" are quite apparent. The Fourier -

transform also suggests that these harmonics are integral multiples of the fundamental.

- It is interesting to note that the compound wiggle wave is always a prelude to the

"" hydraulic jump. If a compound wiggle wave is formed and the amplitude, of the

*1 forcing function, is increased further a threshhold is reached where the wave changes

(bifurcates?) into a travelling hydraulic jump.

.' 3
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Figure 5.5 A photo of the compound 1-3 standing wave. The parameters are
b - 0.17, fi -- .91, and f = .95. Although the forcing frequency is near the
first mode, a 3-mode in space is present.

Figure 5.6 Sarne wave and parameters as Figure 5.5 but at a different time.
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Figure 5.7a Time series at the left tank wall for the compound 1-3 standing

wave. The parameters are 6 - 0.17, fi.91, and f =.95.
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Figure 5.7b The Log magnitude of the Fourier transform of the time series
in Figure 5.7a.
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Figure 5.8 A compound wiggle wave in shallow water. Tlhe parameters are
6 =.084, f~ .6655, and f .67.

Figure 5.9 A compound wiggle wave with the same paramneters as Figure 5.8
at a different t itne showing how the wave crests travel independently.
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Figure 15.10 A compound wiggle wave with the same parameters as Figure

5.8 at Iaperiod later than Figure 5.8.
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Figure 5.12b Tie serie fornithde waehita the leftietankawallrfor thesrs
compogund 5igle2 a veh aaeesae6=.9,A=.1,adf=.7



Figure 5.13 shows an example of another variety of compound wiggle wave in

deeper water. Figures 5.14-5.17 are four other interesting time series which were ob-

served and are worthy of mention. Figures 5.14, 5.15 are of two different compound

wiggle waves showing the increase in harmonic complexity as the amplitude increases

and Figure 5.16,5.17 are time series of the wave height for ordinary 1-mode cnoidal

standing waves as they become more nonlinear. These observations lead to a cascade

hypothesis.

* The following scenario may be constructed based upon the observations recorded

in the figures in this section. When f - 0(62) the solution observed is that of a cnoidal

standing wave which closely resembles the eigenfunction. As the amplitude is increased

such that it is slightly greater than 0(62) the third mode natural frequency becomes

closer to three times the first mode. This brings in the 3-mode cnoidal standing wave

forming the compound 1-3 standing wave observed in Figures 5.5-5.7. Now as the

* . amplitude is increased further relative to 62 a point is reached such that the 5-mode

cnoidal standing wave is excited. This produces the compound wiggle wave observed

in Figures 5.7-5.14. As the amplitude is further increased relative to 62 the cascade of

higher harmonics continues until the dispersion is so small that it no longer can check

the flood of harmonics and a travelling hydraulic jump is formed.

In other words as c increases to c 62 with 62 sufficiently small, the higher natu-

ral frequencies become closer and closer to being integral multiples of the fundamental,

and apparently this occurs in order of increasing mode number causing the cascade

process described above.
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Time, sec

Figure 5.14 A variation of the time series for the compound wiggle wave.
The parameters are 6 = .08, f, = .6655, and f = .67. This time series
corresponds to the photos in Figures 5.8-5.11.

0.05 ,.- .. ,-.,

S ooo "X J -aJ......

-0.00

0 1 2 3 4 5
Time, sec

Figure 5.15 The time series for a further variation of the compound wiggle
wave when 6 = 0.07, f, = .61, and f = .6. Although the wave remains
periodic there is a rich set of harmonics present.
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Figure 5.16 A time series for ani-odher variatningv of th olarg a-m- d .

codr tmsav. The parameters are 6 .12, f .7 , and f .8



. . ~*. -°

Appendix I '"

A coordinate system S(X, Y, Z) is fixed in Newtonian space and a second coor-

dinate system S'(x, y, z) is attached to the center of the undisturbed water level of a

three dimensional partially filled cuboidal container. From the theory of dynamics it

is well known that when the coordinate system S' is accelerating relative to the fixed

system S, the relationship between the absolute and relative acceleration is

A 4+ 2lx + flxi+ lxfxi + flxd + f"xflxd (I.1)

where 0 is the angular velocity of the vessel and d is the fixed distance between the

origins of S and S'. This expression is substituted into the Euler equations of motion

for an inviscid fluid to obtain the governing equations for the fluid in the vessel relative

to S',

DidDt + 2fdxii + llx(i+ d) + 6Axl(F+ d) =,

'1

-- Vp+ gVh (1.2)
p

where h is the elevation above some datum. Because of the presence of I the fluid

motion is not irrotational. However if it is assumeo that the vorticity is strictly due to

the rigid body motion of the vessel the velocity field can be decomposed into

ii= V - xF (1.3)

and the motion relative to S' is assumed to be irrotational. The governing equation is

then the Laplace equation in the interior of the fluid and substitution of (1.3) into (1.2)

results in a modified Bernoulli equation for the pressure,

ao 1 -II0+_ -V -fi VO++-Ixrj) (flxr)"""

at 2 2

SP + gh + (fxd + flxOxd).i f (t) (1.4)
p
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However reducing the problem to two spatial dimensions, as in Figure 1.1, where the

vessel rotates about some fixed point P, results in the set of equations given in Section

-- 1. "' '

Appendix II

In this appendix the coefficients for the second order velocity potential and wave

height for the elliptic standing wave are given.

A2 1 43 9 5 - + - (1.1),
A21  256co Lco62 or a

A22  [9ar + 62" 4 - 312 b2] (11.2)

la 9 5o4 5,a 392621 (11.3)
_- o r -o OmF

3a-- + a 62 +2~40
B2 1  6c 5 + 2 (114)64 : Loo- + Oo

B2 2 a =[ -+ 27 M ~2 6 2 2aO6](15
o- ,,.L12 [9eW 27 4  15a 2 + (C.5 "2"

B 2 3  [6-+ 18 2 (11.6)
2564 orm]

3 9a41 3a' 3a+ m 262]
B24_ _24 _ 0 (11.7)

2561 E726 0y6

II Iii
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Appendix III

In this appendix a theorem for the solvability of the inhornogeneous wave equa-

tion is given. A variation of this solvability condition, when m=1 and the boundary

conditions are dirichlet, was first derived by Keller and Ting[8] and used by them to

prove non-existence of periodic solutions for a class of nonlinear wave equations. It is

iN used here to prove existence, albeit formal existence, for the nonlinear wave equation

governing standing waves.

_ Theorem: Given the inhomogeneous wave equation,

2 a
2 r T _ _2

" Wo2 0 2 T  02T_ - F(x,t), 0 < x < 1, -co < t < o(I.)."
O~t 2  aX2 ".

aT o t"'" (0x 0 x = (1, t0 = 0 (111.2) ,.:

where wo a, m7r, m is any integer greater than zero, T , Tt, and F are periodic

in time with period 27r, F(x,t) is an even function of x, and in addition satisfies

F(x + 1,t + 7r) F(x,t), (111.3)

then there is a solution to the inhomogeneous problem if and only if

":. + oX]d 0 (111.)

°°2a, 2

Proof: Every solution of the homogeneous problem

Wo2 -0 O (111.5)WO o- (0,t) o ,)t0

(0,t) = q (1,t) = 0 (111.6)

which is 27r periodic in time may be expressed as

%Y(x,t) - f(t - ,-X) + f(t - ax) (111.7)
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Multiply (III.) by *(z,t) and integrate from 0 to 1 in z and 0 to 27r in t. Integration

by parts and the end and periodicity conditions result in the left hand side becoming

zero, then
f2w 1

%Y'I(x,t)F(x,t)dxdt =0(1.8

For the higher modes the integrand may be expanded in x taking advantage of the even

extension of F(x,t) to all x,

f 2 Jo Lf/ _ 4(z,t)F(z,t)dxdt 0 (III.9a) :

when m is even and

f 27r f + .',
-- 1 f ____ '(x,t)F(x,t)dxdt = 0 (III.9b)

when m is odd.

Now a change of variable is made to

= t + CmX (II.lOa)

X = t- X (IIl.lOb)

The region of integration in the X, x plane for the first and second modes is shown in

Figure 111.1. The higher modes have regions of a similar nature. With the change of

.* variables (111.10), and use of (111.3), and the fact that the integrand is similar in any

. period parallelogram in Figure 111.1, the integral (111.9) becomes

j2cn JO 2c [f ( ) + f(x)] F[ -X "+X]ddx = O (11.11)
fo0 f 2a ' 2 "f:

which may be written as the sum of two integrals f(C)F and f(x)F. In the first of these

the variables of integration are interchanged. Since F is even in x the sum becomes
2a-.2,,.

A2 f1(x) F X- 2 +2 X 0 (111.13)2a2

As a consequence of the arbitrariness of f(x), this implies (111.4) and proves the theo-

rem.
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x 0

Figure 111.1 The range of integration in
the transformed domain for mode 1 and
2. The region with horizontal stripes is ~ * ~
for m= 1 and the vertical striped region ''.

t 21ris for m=2.
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Appendix IV

In this appendix the details of the Jacobian Elliptic functions necessary for the %
construction of the cnoidal standing wave solutions are given. They are taken from the "'

Handbook of Elliptic Integrals Ill~.

The complete elliptic integral of the first kind is

K( PC)(IV. 1)
'2'J V1.r2sin2

*where in the standing wave problem K (!; ic) 7ri. The incomplete elliptic integral of

the second kind is

E(x; Kc) =0 j Ki + PC cn(; i)dC (IV.2)

which when K (!; ,) 7r has the completed form

The Jacobi Zeta function is

Z (x; K) E E(x; x) - E Xr~c (IVA4)

which has the complete Fourier series

00

Z(XK;;K 0Z i (V
2 n=1 12 2

where q9 exp(-7rK(I; oc')/K(E; ic)) and Pc' 0 /T and the cnoidal function has

the Fourier series
00

cn 2 (X; K)= ZAn COS[Kx) (IV.6) t
where 

.
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r and

An 2 2 ) nq n~l for n >0 (IV.7b)

The constants d1 , d2 used in the expression for W2 in Section 4 are

d,12#c 2A2 - 4B( IC K 2 ) + 8A(2C 2 
- )(IV.8a)

d2 = -6K 2(2 _ 1) (IV.8b)
B

where A and B are defined in Section 4. The integrals used in the first order solution

as well as W2 are now given where C, 0 2r"cP~i)~ n ~;)=

C2 = c __(IV.9a)
K2[r]

#C2F. E1 K2)%

C_6 4(2K'2 - 1)C 4 + 3(1 -i)C 2  (IV.9c)
5KC

2

-6(2ic I )C 6 +- 5(1 -i)C 4 (I9)
7K

2

and

12

_8a,~B 
2 [ -2(-

2 )±2(r 4 -r 2 +1 E(7r;r.)1  (IV.10a)

3f
-4B {2an(l K) + 4(l -

2 (2C -)C 2

22c(i 2
-1 + 4]C4 - 12K2 (21c 1) C6 ± KC} (IV.l0b)

2a... 
3 2a.

142 a)d [ + " I (IV.l1od)
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